Local-dimension-invariant qudit stabilizer codes
نویسندگان
چکیده
منابع مشابه
Classification of topologically protected gates for local stabilizer codes.
Given a quantum error correcting code, an important task is to find encoded operations that can be implemented efficiently and fault tolerantly. In this Letter we focus on topological stabilizer codes and encoded unitary gates that can be implemented by a constant-depth quantum circuit. Such gates have a certain degree of protection since propagation of errors in a constant-depth circuit is lim...
متن کاملLocal stabilizer codes in three dimensions without string logical operators
We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of “logical string segments” to avoid difficulties in defining one-dimensional objects in dis...
متن کاملOn Quantum Stabilizer Codes derived from Local Frobenius Rings
In this paper we consider stabilizer codes over local Frobenius rings. First, we study the relative minimum distances of a stabilizer code and its reduction onto the residue field. We show that for various scenarios, a free stabilizer code over the ring does not underperform the according stabilizer code over the field. This leads us to conjecture that the same is true for all free stabilizer c...
متن کاملFast decoders for qudit topological codes
Qudit toric codes are a natural higher-dimensional generalization of the wellstudied qubit toric code. However, standard methods for error correction of the qubit toric code are not applicable to them. Novel decoders are needed. In this paper we introduce two renormalization group decoders for qudit codes and analyse their error correction thresholds and efficiency. The first decoder is a gener...
متن کاملBeyond Stabilizer Codes
Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group is given by an extraspecial p-group. Suppose that the abstract error group has an abelian index group, then we show that a Clifford...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2020
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.101.052343